

Scheme 1

PII: S0040-4039(97)00448-6

Enantiopure Purpurosamine C Type Glycosyl Donors An Improved Access from *rac*-Acrolein Dimer - Biocatalytic Resolution

Silke Erbeck and Horst Prinzbach*

Chemisches Laboratorium der Universität Freiburg i. Br.,

Institut für Organische Chemie und Biochemie, Albertstr. 21, D-79104 Freiburg, Germany

Summary. An improved synthetic access to a suitably "protected" purpurosamine C type glycosyl donor (11, analogously *ent*-11) starting from racemic 3,4-dihydro-2*H*-pyran-2-carbaldehyde (*rac*-1, acrolein dimer) implies an "indirect aziridination protocol" and a biocatalytic resolution step (acetate hydrolysis, ee > 98). The latter's stereochemical course is confirmed by a highly α -selective glycosylation with an acceptor of known absolute configuration. © 1997 Elsevier Science Ltd.

As part of our activities directed toward the total synthesis of binuclear aminoglycoside antibiotics¹, the search for serviceable routes to the respective glycosyl donors in enantiomerically pure natural and non-natural form is a constant topic on our agenda^{2,3}. A shorter, more efficient route to suitably "protected" purpurosamine C type donors A (and *ent*-A) starting once again from cheap acrolein dimer *rac*-1⁴ and including a biocatalytic resolution is presented in this communication⁵.

Prior attempts to harmonize the installation of the 3α -amino functionality into the pyran ring with the glycosylation procedure had deficiencies in stereo- and regioselectivity^{6,7}. The results reported recently by Danishefsky⁸ for the "indirect aziridination protocol" as applied to the synthesis of β -glycosides was the impetus to utilize this methodology for the preparation of protected donors of type A and thus for the construction of the aspired α glycosides.

The approach outlined in Scheme 2⁹ starts with the standard transformation of *rac*-1 into acetate *rac*-2 (in toto 84%). In the latter, offering little stereochemical guidance, the installation of the 2α , 3β ,-functionalities of *rac*-3 was tested under strictly anhydrous conditions with the combinations N-iodosuccinimide (NIS, 1.2 equiv.) / F₃CONH₂/CH₃CN and [I(*sym*-Coll)₂]ClO₄ (1.5 equiv.)/CF₃CONH₂/CH₂Cl₂. Under the former set of conditions

besides 62% of the desired 3β -iodo- 2α -trifluoroacetamide *rac*-3 ($J_{2,3} = 7.9$, $J_{2,NH} = 6.4$, $J_{6,6} = 8.6$ Hz; 2e, 3e, 6a-chair preferred conformation), 32% of the 2α -succinimide *rac*-5 ($J_{2,3} = 10.7$ Hz),¹⁰ and only traces (< 1%, collected from several runs, 5 g scale) of the 3α -iodo- 2β -trifluoroacetamide *rac*-4 ($J_{2,3} = J_{2,NH} = 10.1$ Hz) were chromatographically isolated. This product distribution was practically temperature invariant; succinimide set free during the reaction evidently is an efficient competitor for the intermediate iodonium ion. Under the second set of conditions (not opti-

Scheme 2: i.) NaBH₄, EtOH, r.t., 6 h, 89%.- ii.) Ac₂O, pyridine, r.t., 4 h, 94%.- iii.) NIS (1.2 equiv), CF₃CONH₂, CH₃CN, 0°C, 1.5 h, 62%.- iv) [I(*sym*-Coll)₂]ClO₄ (1.5 equiv.)/CF₃CONH₂/CH₂Cl₂, 70-72%.- v.) NEt₃, MeOH, DMF (1:2), r.t., 24 h, 84%.

mized) - the perchlorate was added to the mixture of the other components at 0°C - monitoring the reaction (TLC, cyclohexane/ethyl acetate/CHCl₃, 5:5:1) showed the generation of *rac-3* ($R_f = 0.46$) as major component separated after total conversion in 70-72% yield from ca. 6% of *rac-4* ($R_f = 0.53$) and ca. 5% of a mixture of at least two nonidentified components ($R_f = 0.7$). Treatment of *rac-3* with triethylamine in CH₃OH/DMF (1:2) at room temperature provided selectively the β-glycoside *rac-7* (m.p. 152°C, 84% isolated, $J_{1,2} = 7.9$ Hz) via the intermediate aziridine *rac-6*; up to 10% of the 1 α -isomer *rac-8* (m.p. 77°C, $J_{1,2} = 3.7$ Hz) are evidence for the intervention of an alternative reaction channel.

For the resolution of acetate $rac-7^{3,11}$ a good number of enzymes has been tested¹² - with notably very slow conversion only occurring with PPL and PSL (Table 1). With the former at limited conversion (ca. 40%) the formed

Table 1: Biocatalytic separation of *rac-7* (ee determined by 'H NMR, Eu(hfc)₃).

lip.	conv.	(5 <i>S</i>)- 9 (D)	(5 <i>R</i>)-7 (L)
PPL	38%	$[\alpha]_{D}^{25} = -42.0, ee > 98$	
PPL	70%		$[\alpha]_{\rm D}^{25} = +43.6$, ee > 98
PPL	50%	$[\alpha]_{\rm D}^{25} = -27.2$, ee = 59	$[\alpha]_{D}^{25} = +14.6$, ee = 31
PSL	36%	$[\alpha]_{\rm D}^{25} = -35.7$, ee = 79	
PSL	69%		$[\alpha]_{D}^{25} = +44.3, ee > 98$

alcohol (5S)-9 (D), after ca. 70% conversion the remaining acetate (5R)-7 (L) was isolated in very high optical purity (ee > 98). With PSL, though, under comparable conditions only for (5R)-7 a similarly satisfactory result was noted.

Standard mesylation of (5S)-9 (CH₃SO₂Cl/pyridine/CH₂Cl₂/0°C) and substitution by azide (NaN₃/DMF/80°C/ 24 h) provided in toto 92% of the methyl glycoside 10 (m.p. 78°C; $[\alpha]_D^{25} = -50.6$). By exposing the latter to a mixture of Ac₂O/H₂SO₄ (1.5 h) in CH₂Cl₂ at 0°C, the "protected" donor 11 was obtained (89%) in form of a colorless, crystalline, chromatographically separable α/β mixture (12:1, 11 α : m.p. 63°C; $[\alpha]_D^{25} = +57.6$).

Starting from *ent*-7 ($[\alpha]_D^{25} = +44.3$) by an analogous reaction sequence, implying the PLE catalyzed hydrolysis of the acetate (5*R*)-7, via *ent*-9 ($[\alpha]_D^{25} = +42.9$) the enantiomeric donor *ent*-11 ($[\alpha]_D^{25} = -59.8$) was prepared.

With donor 11 (0.1 mmol) and the optically pure sannamine type acceptor 12 (0.11 mmol) of known absolute configuration¹³ an exemplary glycosylation was performed under modified Koenigs-Knorr conditions (BF₃/OEt₂/CH₂Cl₂, 0.11 mmol). The α -glycoside 13 selectively formed (ca. 80%) besides several small components (TLC, ¹H NMR; no β -glycoside) was isolated chromatographically as a pure colorless oil (TLC, ¹H NMR, ¹³C NMR, MS (FAB, Nba): 515(16) [M+Na]⁺, 493(16) [M+H]⁺, 251(3) [C₈H₁₀N₄O₂F₃]⁺, 241(42) [C₉H₁₃N₄O₄]⁺, 139(68) [C₆H₉N₃O]⁺).

Scheme 3

The absolute configuration of the enantiomers 9 - 11 as shown was first derived from the 5S selectivity of PPL established for the hydrolysis of the *rac*-2-hydroxymethyl-3,4-dihydro-2*H*-pyran acetate^{3,11} and was confirmed for the glycoside 13 by the NOE measured between the amide NH at C2' and 2-H¹.

Acknowledgement: This work has been supported by the Fonds der Chemischen Industrie and the BASF AG. -S.E. thanks the Landesgraduiertenförderung of Baden-Württemberg for a fellowship. A generous gift of lipases from Novo Nordisk and Amano Enzyme Europe is gratefully acknowledged. We thank Dr. D. Hunkler for NMR and Dr. J. Wörth for MS analyses.

References and Notes

- C. Ludin, T. Weller, B. Seitz, W. Meier, S. Erbeck, C. Hoenke, R. Krieger, M. Keller, L. Knothe, K. Pelz, A. Wittmer, H. Prinzbach, *Liebigs Ann.* 1995, 291.
- C. Ludin, B. Schwesinger, R. Schwesinger, W. Meier, B. Seitz, T. Weller, C. Hoenke, S. Haitz, S. Erbeck, H. Prinzbach, J. Chem. Soc. Perkin Trans. 1 1994, 2685; cf. B. Schwesinger, R. Schwesinger, H. Prinzbach, Tetrahedron Lett. 1984, 25, 1979.
- X. Liang, R. Krieger, H. Prinzbach, *Tetrahedron Lett.* 1995, 36, 6433; F. Yang, C. Hoenke, H. Prinzbach, *ibid.* 1995, 36, 5151; cf. S. Grabowski, H. Prinzbach, *ibid.* 1996, 37, 7951.
- C.f. The chemical resolution of the racemic pyran-6-carboxylic acid: H. Komada, M. Okada, H. Sumimoto, Makromolecules, 1979, 12, 5; N. Ibrahim, T. Eggimann, E. A. Dixon, H. Wieser, Tetrahedron, 1990, 46, 1503; and of the 6-amine: J. L. Krstenansky, M. del Rosario-Chow, B. L. Currie, J. Heterocycl. Chem., 1992, 29, 707; of rac-1 (X = H): T. Rein, N. Kann, R. Kreuder, B. Gangloff, O. Reiser, Angew. Chem. Int. Ed. Engl. 1994, 33, 556. For a recent oxidative azidonation of glycals s. P. Magnus, M.B. Roe, Tetrahedron Lett. 1996, 37, 303.
- 5) S. Erbeck, part of the Dissertation, University of Freiburg, 1997.
- 6) E. Kozlowska-Gramsz, G. Descotes, Can. J. Chem. 1982, 60, 558; E. Kozlowska-Gramsz, G. Descotes, Tetrahedron Lett. 1981, 22, 563; E. Kozlowska-Gramsz, G. Descotes, J. Heterocyclic Chem. 1983, 20, 671.
- 7) D. Lafont, G. Descotes, Carbohydr. Res. 1988, 175, 35; D. Lafont, G. Descotes, Carbohydr. Res. 1987, 166, 195.
- D. A. Griffith, S. J. Danishefsky, J. Am. Chem. Soc. 1990, 112, 5811; S. J. Danishefsky, J. Y. Roberge, Pure Appl. Chem. 1995, 67, 1647; S. J. Danishefsky, M. T. Bilodeau, Angew. Chem. Int. Ed. Engl. 1996, 35, 1380; cf. R. U. Lemieux, S. Levine, Can. J. Chem. 1964, 42, 1473; R. U. Lemieux, A. R. Morgan, ibid. 1965, 43, 2190; J. Thiem, A. Prahst, I. Lundt, Liebigs Ann. Chem. 1986, 1044.
- 9) All new compounds have been fully characterized (¹H NMR, ¹³C NMR, MS, IR, elemental analysis). For compounds 2-5 the pyran, for compounds 7-11, 13 the glycoside numbering is used.
- 10) J. Thiem, S. Köpper, J. Schwentner, Liebigs Ann. Chem. 1985, 2135.
- S.-K. Kang, J.-H. Jeon, T.Yamaguchi, R.-K. Hong, B.-S. Ko, *Tetrahedron: Asymmetry*, 1995, 6, 97; S.V. Ley, S. Mio, B. Meseguer, *Synlett*, 1996, 787.
- 12) Lipase AY30 from Candida cylindracea (CCL), lipase CE from Humicola lanuginosa (HLL), lipase AP6 from Aspergillus niger (ANL), lipase D from Rhizopus delemar (RDL), lipase F-AP15 from Rhizopus oryzae, lipase G from Penicillium camembertii (PCL), lipase GC from Geotrichum candidum (GCL), lipase N from Rhizopus nivens (RNL), lipase L from Candida lipolytica (CLL), lipase M10 from Mucor javanicus (MJL), lipase PS from Pseudomonas (PSL), lipase from Penicillium roqueforti (PRL): Amano; lipase from Candida antarctica (CAL): Novo; pig pancreas lipase (PPL): Aldrich. Standard experiment: To a solution of rac-7 (500 mg; 1.67 mmol) in acetone (15 mL) was added 0.1 M phosphate buffer (150 mL) and PPL (50 mg). The reaction mixture was stirred at r.t. for 96 h, the extract (CH₂Cl₂) dried (MgSO₄) and evaporated i. vac. Separation by chromatography (silica gel, CHCl₃/ MeOH 10/1) provided 160 mg (37%) (5S)-9 and 300 mg (60%) 7. The acetate (5R)-7 was obtained by making use of more enzyme and longer reaction time (500 mg rac-7 (1.67 mmol), 15 mL acetone, 150 mL 0.1 M phosphate buffer, 75 mg PPL, after 3 d addition of another 50 mg PPL, reaction time 14 d, 138 mg (28%) (5R)-7 and 284 mg (66%) 9).
- R. Kühlmeyer, B. Seitz, T. Weller, H. Fritz, R. Schwesinger, H. Prinzbach, *Chem. Ber.* 1989, 122, 1729; cf. W. Meier, B. Seitz, C. Hoenke, H. Prinzbach, *ibid.* 1994, 127, 1687; C. Hoenke, P. Klüwer, U. Hugger, R. Krieger, H. Prinzbach, *Tetrahedron Lett.* 1993, 34, 4761.

(Received in Germany 26 December 1996; accepted 28 February 1997)